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1. Introduction 

Let 2 be a smooth elliptic operator whose coefficients are 
- - 

defined on D X [O,T], where D E En (Euclidean n-space). 

We consider the problem of the optimal control of systems 

with the formal representation 

Wt = f l  + bu + C cisi 
i 

satisfying W(x,t) -+ 0 as x -+ a, t 2 0, and with control 

U(X, t) = I k(v,x, t)W(v, t)dv 

and cost criterion 

2 T 
+ EU I jP(x,s)u (x,s)dxds, 

T t  

is the formal derivative of the Wiener process zi(t) ‘i where 

and E” is the expectation given the control u, and initial con- 
cp 

dition q ( * ) .  

sequel. 

a variety of noise disturbed objects. but it also arises in the 

following way. Suppose that an object is governed by H = S H  + bu 

and the noise corrupted observations having the It$ differential 

A precise meaning is given to a l l  terms in the 

An equation of the form (3.)  seems like a useful model of 

t 



2 

( for  each x c 5) 
taken, where the  w a re  Wiener processes. Then, the  conditional 

expect ion 

representation i n  the  form (*). 

'Riccat i '  equation (with a reversed t i m e  parameter). The r e s u l t s  

herein 

dyi(x,t) = dt/mi(v,x,t)H(v,t)dv + dwi 

i 

a re  

W(x,t) E(H(x,t)ly(v,s), s 5 t, v E E] has a 

In  fac t ,  (26) i s  the  relevant  

t 

concern the  f i rs t  boundary value problem f o r  a s ing le  

parabolic equation. However, it i s  c l ea r  t h a t  t he  method i s  

applicable (and r e s u l t s  eas i ly  extendible t o )  the  second boundary 

value problem, or  t o  a family of parabolic equations, The l a t t e r  

model i s  qui te  v e r s a t i l e .  For example, we can use a vector para- 

meter process W(x,t) 

system (e.g., (a /&-Y)Y = W + b 'u ' ) .  

' d i s t r ibu ted  system' analogs of the  ' l i n e a r  Gauss-Markov' processes, 

and t r e a t  t he  corresponding average quadratic cost  control  problem. 

generated by (*) as the  input t o  mother  

We can thus generate the  

The r e s u l t s  are  based on the  r e s u l t s  of [l] which provide 

c r i t e r i o n  which guarantee tha t  there  i s  a version of  a vector 

l a t t e r  resu l t s ,  eq. (1) would lo se  i t s  i n t u i t i v e  meaning (as would 

s tochast ic  d i f f e r e n t i a l  equations i f  the  paths were not known t o  

be continuous w.p.1.). 

par t ia l .  d i f f e r e n t i a l  equations [23,  [ 3 ] ,  were concerned with the  . 

nature of t h e  random solution corresponding t o  a random, but  

Previous works concerned with 'random' 

tThe f i l t e r i n g  problem w i l l  be t r ea t ed  i n  a subsequent work. 

paper is  devoted s t r i c t l y  t o  the  control  problem. 

This 
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smooth, boundary condition. Once the necessary smoothness properties 

of the process W(x,t) are established, much of the analysis is 

similar to the analysis of the corresponding deterministic problem. 

However, to our knowledge the few treatments of the deterministic 

problem (e.g.; 

formal in nature. Most of the proofs are slightly abbreviated. We 

have chosen to omit the details of several arguments dealing mainly 

with the smoothness properties of potentials and related integrals. 

The arguments are tedious and standard. Some are based on existence 

theorems (Lemma 2.3) and most others use the arguments of [?I, 
Chapter 1, Section 3-5. 

see the interesting reference [4]) are essentially 

' 

In Section 2, some needed results on processes with a vector 

parameter set are given. The proofs of the statements of Lemma 2.1 

are found in [l]. 

its corollary follow from Lemma 2.1 and the properties of stochastic 

integrals depending on a scalar time parameter. 

3.2 define the solution of (*) and its basic properties; 

w.p.1, existence of Hslder continuous w.p.1. second derivatives 

(with respect to the xi), etc. The optimality and 'approximation 

in pplicy space' results appear in Section 4. Although we deal with a 

single 'white noise' input, the results are obviously valid for the 

no more general, 'infinite dimensional' white noise input of the 

Corollary to Lemma 2.2. 

The proofs of the statements of Lemma 2.2 and 

Theorems 3.1 and 

continuity 



2. Mathematical Preliminaries 

Definit ion.  Following the  usual usage, a version of t he  

vector parameter s ca l a r  valued process f (y )  i s  any sca la r  valued 

process f(y) such t h a t  P[ f (y)  = f ( y ) )  = 1 for  a l l  vector para- 

meter values y. The parameter y var ies  over a domain R i n  En. 

N ry 

Lemma 2.1. Let be t h e  closure of a bounded open domain - -- --  - 
- 

with generic point y = (yl,. . . ,yn), --- and l e t  the  boundary - of R 

have the  property - t h a t  any line 
c_ 

i n t e r sec t s  it - only f i n i t e l y  often.  

Let f ( - )  be a s tochas t ica l ly  continuous process with parameter 

set  E. Suppose t h a t  for each nonempty sect ion 

- -- 

- 

t ..., b ) so  t h a t  some version of - - bi-l> bi+l, n --- I 

n u l l  o s e t  N .  (bl,. .., 
..., b ) i s  continuous on Ri(bl  ,..., bi-l, f(b1, ' * jbi-1, ' ,b i+l ,  

... b ) f o r  o / Ni(bl ,..., bi-l,bi+l ,..., bn). Then ([1 3 
b i + 1 9  n - 

1 
- 

- n -  

Theorem 

W.P.1. 

- 
1) there  i s  a version of f ( y )  which i s  continuous on R --- - -- - 

Let --- t h e  mean square der ivat ives  of - f (y), with respect  t o  - 
- 

y1 ,..., yr, have continuous versions on 

a continuous version of  f (y )  on fi w.p.1. Then there  i s  a 

version of f (y)  which, w.p.l., i s  continuous and has continuous 

ordinary der ivat ives  with respect t o  yl, ...,yr, on R (denoted 

R w.p.1. and l e t  there  be ---- I_ - 

- ---- - - 

- - -- 
- 

- - 
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Under t h e  condition (I SI i s  the  Euclidean norm) 
2_ -- -- 

f o r  some a > 0, f3 > 0, the re  i s  a H6lder t continuous (with Hb'lder - -- --- 
exponent a l p )  version of f ( - )  on w.p.1.  ([ 1 3 ,  Theorem 2) .  

1 -  
- 

Note t h a t  t h e  --- above implies t ha t  - i f  - and t h e  mean square --- 
s a t i s f y  (*-E), then a version 'r -- derivativeswith respect t o  yl, ... 

of f ( e )  

- 
has continuous der ivat ives  with respect  t o  yl,. . .,yr, - - - - 

w.p.1.  

An immediate consequence of Lemma 2 .1  i s  

Lemma 2.2.  Let x E 5 and s , t  E [O,T]. Suppose 

R 5 D x [O,T]  s a t i s f i e s  t h e  conditions on R i n  Lemma 2.1. Let 

- - 
- - 

- - - 

z be .a Wiener process and suppose the  function a(x, t, s)  s a t i s f i e s  - - s - -  

1 2  . I a (x , t ,s )ds  < 00 
0 

f o r  each x E 5 and t E [O,T] and - - -- 

+By H6lder cont inui ty  (with exponent r > 0) we mean t h a t  
If(y+-6)-f(y)l  5 K(w)l61' where K(w) < 00 w . p . 1 .  and 's not de- 

pend on y. I n  works on p a r t i a l  d i f f e r e n t i a l  equation,, where we 

l e t  y = (x,t) ,  H8lder continuity i s  meant t o  imply I f (x , t ) - f (y , s ) l  5 

K(w)(lx-y[ r +It-slr/2). Since we are  not concerned with the  spec i f i c  
value of r, e i t h e r  form is  su i tab le  i n  t h i s  paper. 
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2 t 
.f [a(X,t+A,s)-a(x,t,s)] ds  5 €(A) 
0 

2 t 
.f [a(x+6, t ,s)-a(x, t ,s)]  ds 5 € ( ( E ( )  
0 

where €(A) + 0 as A -+ 0. Then + the  random function - - -  

t 
$ ( X , t >  = I a(x, t ,s)dz S 

0 

- 
has a Halder continuous version on R w.p.l., f o r  some Hijlder ex- 

ponent y > 0. L I f ,  fur ther ,  - the Dia(x,t,s) E &(x,i;, ~ ) / a x ~  

-- - -- - 

s a t i s f y  the  conditions on a (x , t ,  s) above then the  random func- - - -, -- 
t i o n s  

can be iden t i f i ed  with the  mean square der ivat ive of 

respect  t o  x and the re  i s  a version of q(x,t)  which i s  con- 

+(x, t )  with -- --_c - I__ 

- i>------ --- 

t inuous and has Hb'lder continuous (some non-random exponent y > 0) -- 

+The d e t a i l s  can be deduced from Lerma 2.1. The reader i s  re fer red  

to [ 1 1, Example 2, f o r  the de t a i l s  of a similar r e s u l t .  (-x--X--X-) im- 
t+A t an 

p l i e s  (x-E) of Lemma 2.1 since a(x+6, t+A, s)dzs-l  a ( x ,  t, s)dzs] 

= ( h - 1 ) . * > . 3 . 1  [I (a(x+6,t+A,~)-a(x,t,s))*ds]~ which i s  

O(/All+B+IEI1+B) 

E(/ 
0 0 t 

0 
f o r  some f3 > 0 and a s u f f i c i e n t l y  la rge  m. 
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- 
derivat ives  (with respect t o  x . )  on R w.p.1. If the  second - - 1 -  -- 
derivat ives  (with respect t o  the x . )  of a (x , t , s )  s a t i s f y  the  con- -- 1 -  -- - 
d i t ions  on a (x , t , s ) ,  then t h e  conclusions hold f o r  t he  second - -- --- 
derivat ives  of JI(x,t) with respect t o  the  x i' -- - 

Corollary. Let zis, i = 1, ... be a sequence of independent 
9 - -  - - 

Wiener processes on [O,T] and l e t  the  family a . ( x , t , s )  s a t i s f y  
1 --- - 

2 t 

0 1  
C [ a i ( x , t + 4 s ) - a i ( ~ , t , s ) ]  ds 6 €(A), 

where €(A) -+ 0 as A + 0. Then w.p.1. there  i s  a Holder con- 
I_ --- - _c_ - 

tinuous version of - 

Define D as the  d i f f e r e n t i a l  operator a/&, and l e t  i 

2 = a. .(x,t)D.D. + 1 di(x,t)Di + c(x , t ) .  
1J 1 J  i i, 3 

L e t  us co l l ec t  t he  following assumptions here. Note t h a t  Holder 



8 

cont inui ty  on the  compact s e t  

cont inui ty  on R. 

is  equivalent t o  uniform Hzlder 
- 

(E-1) L e t  R = D X [O,T], where D i s  a bounded and open Bore1 

measurable domain. 

neighborhood V and a function on h ( . )  so t h a t  bD n V has the  

To each point on &I, l e t  there  e x i s t  a 

representation x = h(xi ,..., xi-l, X i+l ,..., xn) for some component 
i .  

x where h(x) has Halder continuous second p a r t i a l  der ivat ives  t . 
iJ 

(E-2) On E, t he  coeff ic ients  of 2 a re  bounded and Hzlder con- 

tinuous. 

(E-3) There exists a real number K > 0 so tha t  

f o r  any vector 5 .  

- 
(E-4) Let ~ ( x ,  t),Dicr(x,t),D.D .cr(x,t) be Hdlder continuous i n  R. 

1 J  
- 

(E-5) Let cr(x,t) and 2e(x,t)  tend t o  zero as x -+ a D i n  R 

(E-6) Let b (x , t )  be HElder continuous on and k(y,x,t)  be 

bounded, measurable and H6lder continuous i n  x , t  on E, uniformly 

i n  y. 

(E-7) Let a i j  (x , t )  have H8lder continuous second der ivat ives  i n  

R, and di(x,t)  H.' older continuous f i rs t  der ivat ives  i n  R. 
- - 

(E-1) implies t he  condition on E of Lemma 2.1. t 
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It w i l l  be helpful  t o  co l l ec t  the  following r e s u l t s  here. 

They w i l l  be used without reference i n  the  sequel. 

- Lemma 2 . 3 A  ([ 5 3, Theorem 7, Chapter 3). Suppose (E-1) - 

. (E-3) .  Le$ cp (x, 0) have Hbider continuous second der ivat ives  i n  

D and s a t i s f y  cp(x,O) + O  and Q(x,O) + O  as x 3 &. Let 

c p ( & , t )  E 0. Suppose t h a t  f ( x , t )  i s  H6lder continuous i n  R and 

tends t o  zero as 

t i o n  t o  U = t U +  f on E which s a t i s f i e s  t he  boundary condition 

cp(x,t). Ut(x,t),DiU(x,t) and D.D .U(x,t) are Hb'lder continuous 

on R and SU(x,t) + O  as x + aD, t 2 0. 

- - - 
- 

- - - - 
- 

- - - - 
x + a. Then there  i s  a continuous unique solu- ---- - ---- 

t - - 

- 1 J  - 
- 

- - - 
of functions on E which -0 

- Define the  Banach space - - 
s a t i s f y  f (x,t) + 0 as x + aD and w i t h  t he  norm 

a ---- 

s a t i s f y  t f ( x , t )  + 0 as x 3 aD, and have the  norm ---- - 

Then -, - 
Ut ' -  i U  = f 

with homogeneous boundary conditions, - t h e  equation 

-0 represents a continuous l i n e a r  map of i n t o  ca - - -- 
-0 

(Follows from [ 5 3, Chapter 3; eqn. 2.2.l, and t h e  f i rs t  2+a' 
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p a r t  of the Lemma.) 1. 

Lemma 2.3B ([?I, Theorem 16, Chapter 3). Suppose (E-1)- 

(E-3) .  Then there  i s  a Greens function G(x,x ' ; t , t ' )  - f o r  U t = 

2U. G(x,x l ; t , t l )  40,  - as x -+ &I - f o r  t > t l .  DiG(x,xl;t,tl),  

D.D.G(x,x';t,t') - and Gt(x,xl ; t , t l )  - are  continuous - i n  (x , t )  2 

---- 

1 J  
D x ( t ' ,T] .  - If a (x , t )  

a ( x , t , t t )  E IG(x,x' ; t , t  

u (x , t )  - on D n ( t l , T ]  

- If cr(x,t), - and l c (x ,  

continuous on E, then - - 

i s  continuous i n  x f o r  each t, then -- - - 
)cr(x', t' s a t i s f i e s  (+'at-~)a(x, t, t' ) = 

and tends t o  zero as x +&I - f o r  t > t'. ----- 
tend t o  zero --- as - x -+& and are  Holder -- 

a ( x , t , t l  ) s a t i s f i e s  t he  same condit'loas f o r  - - -- 
(x , t )  E 5 fl [ t ' , T ] .  If - o(x,t)  - i s  bounded and - measurable, then 

- t 
d t ' a ( x , t , t ' )  tends t o  z e r o  as x -+ & -- and i s  continuous - on R. 

(The last  statement follows from the  arguments concerning po ten t i a l s  

-- 
0 

i n  [5], Chapter 1, Sections 3-5.) 

Lemma 2.3C ([5], Theorem 17, Chapter 3). Suppose (E-1)- 

Note tha t  G*(x,xt ; t , t l )  - i s  defined - for t < t1 -- and t h a t  

(a/at+l*)G*(x,x';t,t ') = 0 - on D x [ O , t l ) .  

-- 



3.  The Stochastic Partial Differential Equation - 

Theorem 3.1. Suppose (E-1) - (E-?). Let 'p (x) have Holder - 
- 

continuous second derivatives on R and tend to zero as x + &I. 

Let @(x) + 0 as x -+ b. Then there is a process W(x,t) with 

- ----- 

- -- - ---- 
parameter set ?i satisfying (~'denotes z(t')) - 

W(x,t) = ~G(x,x1;t,0)cp(x1)dxl 

t 
+ j !  dz' (lG(x,xl;t,tl)a(xl,tl)dxl). 
0 

- There is a version of W(x,t) which is continuous on R w.p.1. and 

satisfies W(x,O) = cp(x), W(b,t) = 0. DiW(x,t) and D.D.W(x,t) 

are a l s o  Holder continuous on w.p.1. and gW(x,t) + 0 as x -&I, 

Also, w.p. 1. 

- - - --- 

- 1 J  

- - -- - 

W (x, t) = /G(x, X' ; t, s )W (x' , s ) dxl 
t 

+ j !  dzl lG(x ,x ' ; t , t l )a (x l , t ' )dx ' .  
S 

For each fixed x in 5, W(x,t) has the It; differential --- - --- 

Remark. W(x,t) is not (w.p.1.) differentiable in t. The 

smoothness of a(x,t) determines the smoothness of W(x,t). Lema 2.2 

plays a crucial role here. It is not a priori obvious that the last 
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term i n  (1) has a version which is  su f f i c i en t ly  smooth w.p.1. Lemmas 

2.1, 2.2 tu rn  the  estimates o f t h e  s tochas t ic  cont inui ty  of (1) and 

t h e  s tochast ic  cont inui ty  of i t s  f i r s t  two mean square der ivat ives  

.(with respect t o  the  x . )  i n to  a statement concerning the existence 

of a version fo r  each 

smooth. 

1 

x,t ,  so  t h a t  the  ac tua l  sample functions a re  

The order of integrat ion i n  the  s tochast ic  i n t eg ra l  i n  (1) 

must be preserved. Also, t he  theorem implies t h a t  the  %w term i n  

(3) has a version which is continuous w.p.1. on R. 
- 

It can be shown t h a t  the process W ( . , t ) .  with parameter t, 

i s  a continuous Markov process with values i n  a Banach space of func- 

t i ons  which s a t i s f y  the  appropriate boundary conditions 

and $N(x,t) + 0 as x 3 b) and have HGlder continuous second 

(W(x,t) 3 0 

der ivat ives  ( f o r  some f ixed non-random H6lder exponent). 

Proof. The proof i s  a consequence of Lemmas 2.2 and 2.3. Let 

be t h e  f i r s t  term on the  r i g h t  of (1). p(x , t )  

1f3 = p,; p(x,t)  

as x - 3  f o r  t, 2 0.  6(x,t)  and 2p(x,t)  tend t o  cp(x) and 

a(.), resp. as t + 0. Write 

Then (Lemma2.3) 

s a t i s f i e s  the boundary conditions and 2@(x,t)  --f 0 

Then for t 2 t l( t t  fixed) a (x , t , t ' ) ,  Dia(x, t , t l )  and D.D.a(x,t , t ' ) ,  

are HGlder continuous on R and each s a t i s f i e s  t he  conditions on 

a ( x , t , t ' )  of Lemma 2.2. 

1 J  - 

Hence, by Lemma 2.2, there  i s  a version of 



- 
which i s  Holder continuous w.p.1. on R, and which has Holder con- 
' tinuous second der ivat ives  with respect t o  the  x w.p.1. on - R. 

i 
Di$(x,t) and D.D.$(x,t) c m  be iden t i f i ed  with the  Holder con- 

tinuous versions (which e x i s t  w.p.1. i n  a) of 
1 J  

resp. Thus S$(x,t) has a version which i s  Holder 

and which i s  c l ea r ly  a Holder continuous version of 

Using the  cont inui ty  of Z$(x,t) and the  f a c t  t h a t  

p robabi l i ty  (since ga(x,t,t ')-+ 0) as x -+ a D ,  we 

continuous w.p. l., 

I dz' Za(x, t, t' ) . 
g$(x,t)  40 i n  

t 

0 

have g$(x, t)  -+ 0 

as x 3 a D .  

Equatiorl ( 3 )  f o l l m a  f r m  the  d e f i n i t i n n  of the 1t.o d i f f e r e n t i a l  of 

(1) for  each fixed x, and the observation t h a t  
t 0 

dm(x , t , t )  + d t l  dzlat(x, . t , t l )  where a ( x , t , t )  = a (x , t )  and 

Thus (1) sa t i - s f ies  t h e  required boundary condttions. 

A 

t 
d/ dz 'a (x , t , t ' )  = 

0 

at (x, t, t' ) = Sa(x, t, t' ) . 
Equation (2) i s  obviously t r u e  w.p.1. f o r  each f ixed x,t ,s .  

To show t h a t  it i s  t rue  w.p.1. on 5 x [O,T] x [O,T], note f i r s t  t h a t  

I 
t 

$(x,t, s) = I dz' (/G(x,x'; t, s ) ~ ( x ' ,  s>dx l  ] 
S 
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can be defined (using previous arguments) t o  be continuous (as a 

function of x,t,  s) on rd x [O,T] x [O,T], except f o r  w i n  some 

n u l l  s e t  N. Define $(x, t )  as the  (unique) lim $(x, t ,s) .  

The l i m i t  e x i s t s  for  w 

(for o) N) function $(x,t) defined previously. Then, fo r  

s + o  
N, and i s  a version of the  continuous 

Now wri t ing (1) i n  the  equivalent form 

+ J G  (x, x' ; t, s) lf (x' , s, 0) dx' + $ (x, t, s ) 

and using the  semigroup property 

and the  cont inui ty  w.p.1. of $(x, t ,s)  gives (2). Q.E.D. 

The concern of the  paper i s  r e s t r i c t e d  t o  systems with 

controls,  which a re  l i n e a r  i n  W(x,t) and which appear l i nea r ly  

i n  the d i f f e r e n t i a l  equation. Thus adding a cont ro l  term t o  (3) 

we have, formally, 



.. 

where the cont ro l  i s  

Theorem 3.2 gives meaning t o  (3a). 

Theorem 3.2. Suppose (E-6) and a l l  the assumptions of - _- - - 
Theorem 3.1, and l e t  u (x , t )  be given by (4). Then there  i s  a 

Hglder continuous (w.p.1) version of (5 )  
--- ---- -- 
- 

t (5 )  
+ / dt '  jG(x,xl; t, t1 )b ( X I ,  t1 )u(x l ,  t1 ) d x l  
0 

Furthermore (w.pel.) DiW(x,t) and D.D.W(x,t) a re  HGlder con- 

tinuous on E, and both W(x,t) and ifW(x,t) tend t o  zero as 

- - 1 J  - 
-- - ---- - 

There i s  a kernel  B(x,x' ; t , t ' ) ,  so t h a t  - -- -- 

where q(x,t)  i s  t he  sm of the  f i r s t  two terms on the r i g h t  s ide 
--.__ ------------ 
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t -0 -0 (E). W(x,t) has C2+a - of ( 5 ) .  B(x,x' ; t , t ' )  maps c ~ + ~ ( R )  i n to  

t h e  It: d i f f e r e n t i a l  -- 

dW(x,t) = m ( x ,  t ) d t  + G(x, t )dz  + b(x,t)/k(y,x, t)W(y,t)dydt (7) 

- 
Proof. Let W(x,t) be HElder continuous on R (exponent 

a) and tend t o  zero as 

be r 2 a. Then 

x -+ a. Let the  Halder exponent i n  (E-6) 

- 
is H8lder continuous on R 

x' -+ b. 

W(x,t> E Pa continuously in to  

t inuous l i n e a r  map of C i n to  C2+a. 

(exponent a) and tends t o  zero as 

Thus, (by Lemma 2.3A) t h e  l as t  term i n  ( 5 )  maps 

-4 Hence ( 5 )  a lso  i s  a con- cas. 
-0 -0 

2+a 

Write ( 5 )  as 

t 
W(X, t)  = q(X, t) + / /M(x,x' ; t, t?W(X ' ,  t' )dx' (9) 

0 

where 

The kernel  M(x,x' ; t , t ' )  must a l so  correspond t o  a continuous 

l i n e a r  map of 
-0 -0 i n t o  C g a .  By 'Theorem 3.1, and Lemma 2.3A 2+a 

-0 
'See Lemma 2.3A f o r  the  def in i t ion  of C2+a. 



-0 q(x,t) is in c * + ~  for some a > 0 w.p.1.  Then, the theory of 

Volterra integral equations asserts the existence of a 

W(x,t) E i? 

.yields the representation (6) 

satisfying (9) (and, hence, ( 5 ) )  w.p.1. It a l s o  2+a 

A 

The assertion concerning the Ito differential follows 

exactly as in the proof of Theorem 3.1 .  Q.E.D. 



4. Tne Solution t o  the Optimum Control Problem -- - 

The solut ion i s  divided i n t o  four Theorems. Theorem 4 . 1  

es tab l i shes  some required properties '  of a p a r t i a l  d i f f e r e n t i a l  in- 

kegral  equation ( the analog of t h e  R i c a t t i  equation). Theorem 4.2 

es tab l i shes  a formula f o r  t h e  cos t  corresponding t o  a f ixed  control.  

Then, (Theorem 4.3) the  usual dynamic programming technique of 

quas i l inear iza t ion  (or approximation i n  pol icy space) i s  applied 

to obtain a sequence of cos ts  (and improved controls)  which 

(Theorem 4.4) converges t o  the  minimum cos t  (and optimal control) .  

The ad jo in t  of $, operating on fhnctions of x, i s  wr i t ten  - - - - - 

* 
mxE(x) = c D . D . [ a .  . (x , t )k(x) ]  - c Di [d i (x , t )~ (x ) ]  

i , j  1 J 1J 

h 
0 

A 

Define the  Banach space C2+a of functions on R = 

- 
I) x 5 X[O,T] sa t i s fy ing  the  cunditioii  tiiat f(x,y, I\ b l ,  zxI a * n r - .  (A,)-, t) 

* 
and 2 f (x ,y , t )  -+ 0 as x -+ & o r  y -+ &, or  t -+ T, and w i t h  

Y 
norm 



where 

Theorem 4.1. Assume - the conditions - of Theorem 3.2, - and 

(E-7). - Let Q(x,y,t)  - be symmetric, Holder continuous - on 
- 
D X E x  [O,T] - and pos i t ive  def ini te t  - f o r  t c [O,T]. 

Q(x,y,t)  -+ 0 as x + &I or  y + &I. . Write -_---. 

- Let 

- - 

There i s  a unique symmetric (in x,y) - and continuous solution - t o  

(10) which 

--- 
"0 

C2+a. i n  addition, -- i s  i n  
-J - 

Proof. By (E-7), the  adjoint  operator and i t s  Greens func- 

The proof involves some standard calculations,  t i o n  a re  defined. 

similar t o  those of Sections 3-5, Chapter 1, ['j 3, and most of the  

d e t a i l s  a re  l e f t  t o  the  reader. Consider f i r s t  t h e  adjoint  equa- 
- 

t i o n  (ll), defined i n  D X 6 X [O,T] 

2 
tBy pos i t ive  definiteness,  we mean 

The condition i s  not actual ly  needed u n t i l  Theorem 4.4. 
lQ(x,y,t)q(x)q(y)dxdy 2 mllq(x)[ dx. 
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N * * -  
Rt(x,Y,t) + (2 X Y  +g )R(x,Y,~) = -Q(x,~,t) (11) 

N 

with boundary conditions R(x,y,t) 4 0 as x 4 a or y +aD 

.or t +T. The unique solution to (11) can be verified to be the 

symmetric function. t, f-t 

Write (12) as 

where 

h(y,x';t,s) is uniformly HGlder continuous in y,x',t,s for 

s 2 t, and h(y,x';t,s) -10 as x + a D  or y +aD. Let t o 5  t 

and consider 

tConsider the differential equation (*) 5 = AP + PA' - Q, with 
boundary condition P(T) = 0. Let @(t ,s )  be the fundamental 
matrix of k = Ax. Then (*) has the solution (**) P(t) = 

J @(t, s ) Q ( s ) Q 1  (t, s)ds .  
t 
and (12). (Here ' denotes transpose.) 

T 
Note the similarity in form between (w) 

* * 
'Recall that Gt(x,xl;t,t') + 2xG(x,x';t,t') = 0 for t < t'. 



T cv 

R(x,y,tlto) = .f .fdsdx'G*(x,X1;t,S)h(Y,X1;to, S) 
t 

ru * 
R(x,y,tl to) 

t = t i n  h) t o  which Lemma 2.3A i s  applicable. Thus, fo r  each f ixed y, 

i s  the  solut ion t o  the ad jo in t  equation Ut + 2 U = h (with 

t 
0 

,-4 

p(x,y, t l to)  tend t o  zero as x 4 &I or t -+ T, by 

v i r tue  of t he  propert ies  of Q(x, y, t); a l so  R(X,Y, tl to) i s  symmetric 

i n  x,y. Since R(x,y,tolto) and ixR(x,y,tolto) tend t o  zero as  

x -+ (3D o r  y -+ &I, and to i s  arbi t rary,  we conclude t h a t  the  terms 
cv *- 
R(x,y, t l t )  = %(x,y,t)  and SxR(x,y,t) and Z*%(x,y,t) are  Holder con- 

tinuous and tend t o  zero as x --j &I or  y + &I or t 3 T. Now, t o  

complete the  proof t h a t  

R (x,y,t)  i s  Holder continuous. But t h i s  i s  t rue  s ince R(x,y,t l to) 

m d  a!>(x,y,tlto) 
N 

N *- 

Y 

'A 

g(x,y, t )  6 Co we need only show t h a t  an. 
N N 

t 
has Hzlder continuous der ivat ives  with respect t o  t and to i n  t 5 t 0 2 0 

(uniformly i n  x,y i n  5 X 5) .  

For the  r e s t  of t he  proof, wri te  (10) as the  Volterra in t eg ra l  equation 

where M(x',y',s) 

subs t i tu ted  for  x,y,t, resp.). 

to ((14) i s  obtained by changing the  order of integrat ion i n  (13)) 

i s  the  in tegra l  term i n  the  middle of (10) (with x l , y ' , s  

I f  there  i s  a solut ion of the desired form 

T 
R(x,Y,t) = g(x ,y , t )  -t .f ds.f.fR(v,w,s)K(x,y;v,w;t,s)dvd~~ 

t 
(14 1 

T 
+ .f ds.f.fR(v,w, s)K(y,x;w,v;t, s)dvdw, 

t 
-~ 

'The boundary conditions a re  
t ime parameter i s  reversed (changing the  terminal manifold 
i n i t i a l  manifold D x (0 ) )  then, since 2* s a t i s f i e s  ( E l )  - (E3), Lemma 2.3A 
i s  applicable.  

U(x , t )  = 0 on 6 x (T) + $Dx [O,T]. 
5 X (T) 

If the  
t o  an 
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where 

then there  is  a solution of t h e  desired form t o  (13). 

ve r i f i ed  t h a t  under the  imposed conditions, the  kernel  K represents 

It can be 

t 

h 
A 

i n t o  C 24-a 2-a' 

Finally,  it can be verified,  v i a  the theory of Volterra equa- 

0 a continuous l i nea r  map of C 

t ions,  t h a t  (14) does have a unique solut ion of t h e  desired form. 

Q.E.D. 

Let the control  u be given by 

U(X, S )  = Jku(v, X, s)W(V, S)dv. 

The t he  cost becomes 

U t  U C (9 ,  t) = EUI/TdxdjrdsT:J (x, s >W (y, s )Q (x, y; s 
q t  

where 

Recall  t h a t  the  system t h a t  we a re  concerned with i s  defined by 

Theorem 3 .2  and has the  It0 d i f f e r e n t i a l  
h 

'The map i s  given by the  sum of the  two in tegra ls  of (14). 



and boundary condition W(x,t) + 0, as x -+ a. 

Theorem 4.2. Assume the  conditions of Theorem 4.1. L e t  

W(x,t) s a t i s f y  ( 5 ) ,  with the  control  u (x , t )  given by (4), and 

l e t  t he  i n i t i a l  condition (given a t  time 

q (x )  s a t i s f y  the  conditions on cp(x) of Theorem 3.1. 

- - - 

-- -- - 

t E: [O,T]) W(x,t) = -- --- 

- - - 
Suppose t h a t  S(x,y,t) ,P(v,t) ,ku(x,v,t)  and b (v , t )  a re  - - 

Holder continuous i n  t h e i r  arguments and S(x,y, t )  and k’-’-(x,v,t) 

tend t o  zero as x -+ &I or  y -+ b. Let P(x,t)  > 0 on 5 x [O,T] 
- -- 

- - - ---- 
and 

D x  

- 
- 

l e t  S(x,y, t )  be symmetric and non-negative d e f i n i t e  on 

D for  each t i n  [O,T].  Then 

- - - - 
- 

- -- 

where 

RU(x, y, s )  

Q(x,Y,s) = Q (x,Y,s). 

i s  t he  function introduced i n  Theorem 4.1, corresponding t o  
- - -- 

U 

-- Proof. The assumptions on S(x ,y , t ) ,P(v , t ) ,  kU(x,v, t )  and 

b(v, t)  guarantee t h a t  Q’(x,y, t )  s a t i s f i e s  the  conditions 



on Q(x,y,t)  i n  Theorem 4.1. For f ixed x,y, t h e  function 

RU(X,Y, r)W(x, r)W(y, r) 3 F(X,Y, r)  

I 

has t h e  It: d i f f e r e n t i a l  (Theorem 3.2) i n  

of W(x,t) f o r  which f l ( x , t )  i s  continuous w . p . 1 .  - see Theorem 

[O,T] (we use a version 

~ 3.2) 

This, together with RU(x,y,T) = 0 implies (w.p.1 f o r  each x,y, t )  

t h a t  

Furthermore, 



Each of the integrands on the  r igh t  s ide of (16) can be defined 

be defined t o  be a ~nezzsur&l;lc function of 

tegrable  over 

m,xjy,r and absolutely in- 

R x 5 x 5 x [ t , T ] .  Thus (16), together with Fubinits 

Theorem, implies t h a t  

Now W(x,t) (w.p.1.) and RU(x,y,t) (for each fixed y E E) 

a r e  continuous and have unif'ormly continuous f i r s t  and second 

der ivat ives ,  with respect t o  the x i n  t h e  domain R. Also W(x,t) 
i' 

(w.p.1.) and R (x,y,t) tend t o  zero as x --j a. Thus, upon p a r t i a l l y  

- 

U 

in tegra t ing  and using Greens iden t i ty  t o  eliminate the  boundary in- 



in tegra ls  which a re  obtained (which a re  zero, owing t o  the  f i rs t  two 

sentences of th-is paragraph), we get ( for  (u not i n  some n u l l  set) 

Subst i tut ing t h i s  i n  (l'j'), and using the symmetry of R(x,y,r), yields,  

a f t e r  another change i n  t h e  order of integrat ion 

+ 1 b(xl,r)k(x,xt,r)RU(xf,y,r)dxl + (18) 

1 b(xl,r)k(y,x',r)Ru(xJxt,r)dx'] + p ( t ) .  

Finally,  using the  r e l a t ion  (10) i n  (18) y ie lds  (13). Q.E.D. 

Write Cu(W(x,t),t) for  t he  function CU(cp , t )  with W(x,t) 
A 

subs t i tu ted  f o r  cp (t). Write dvCu(W(x, t), t )  f o r  t he  I t o  d i f f e r -  

e n t i a l  of t h e  cost  (corresponding t o  control  u)  but  where, i n  t he  

expression f o r  dW(x, t), a control v.(x,t) replaces the  control  

u(x, t)  - 

Theorem 4.3. Let u(x, t )  be a given control  (then k'(x,y,t) i s  - --- - 
given) and assume the,  other conditions of Theorem 4.2. Let ;(x, t )  be 

the  funct-ion v(x, t )  which niinimizes , 

- - ~- -- - 

- 



. ' 8  . 

or equivalently, which minimizes 
-9 

Then 

rrr 
u(x,s) is given by --- 

ru 

and the corresponding Ru(x,y, t) satisfies the conditions on the 

RU(X, Y, t) of Theorem 4.2. Also 

- - -- 
--- 



for any bounded and measurable f'unction rp(x). - -- 

PNof.  BY Theorem 4.2, (19) i s  non-negative and equals zero 

when v(x , t )  = u(x, t ) .  Then any minimizing v(x, t ) ,  (provided t h a t  

t he  corresponding in t eg ra l s  of (19) ex i s t )  must leave (19) non- 

posi t ive.  This, together with the f a c t s  t h a t  Cv(cp,t) i s  the  sum 

of t h e  las t  two in tegra ls  i n  (19) and t h a t  the  f i rs t  in t eg ra l  of (19) 

equals -CUt+ , t ) ,  imFlies (a). The v (x , t )  minimizing (19) i s  t h e  

v(x, t) which minimizes 

01; equivalently, which minimizes (a). T'he v(x, t )  minimizing ( 2 0 )  

i s  given by (22). 

(v5a Theorem 4.2 ) since the  

The statement below (23) i s  e a s i l y  es tabl ished - 
kU(y,x,t) of (23) satisfies the  con- 

d i t i ons  on kv(y,x,t) i n  the Hy-pothesis of Theorem 4.2. (24) i s  

va l id  f o r  a l l  doubly d i f f e r e n t i a l  functions cp(x) which a re  zero 

on & since 



for  a l l  such cp(x). 

(almost everywhere) pointwise limits of a bounded sequence of such 

cp(x). Q.E.D. 

Hence (24) is  v a l i d  f o r  a l l  functions which a re  

Theorem 4.4 i s  the  optimality theorem. Let kn,Qn and Rn 
U U U 

correspor,d tc! k n , Q n and R n , resp. 

Theorem 4.4. Let u (x, t) be given and l e t  t he  correspond- -- - 0 - 
ing k 0 (y,x,t) s a t i s f y  the  conditions on kU(y,x,t)  in  Theorem - - - - 
4.2. Suppose the  other conditions of Theorem 4.2 hold. Define 

un(x,t)  

Then R (x,y,t)  converges pointwise (almost everywhere) t o  an R(x,y,t) 

which s a t i s f i e s  the  conditions of Theorem 4.1. The control  u(x , t )  

corresponding t o  R(x,y,t) v ia  (a) (see (22)) 

- - -- 

from ~ ~ - ~ ( x , t ) ,  n = 1 ,..., via the  procedure of Theorem 4.3 - - -- 
n 

-- - 
- - - 2__ 

- - 

- 
i s  optimal i n  t h a t  CU(cp, t )  5 C V (cp,t) f o r  any other control  - -- -L_- 



. 

I 

I 

V where k (y,x,t)  s a t i s f i e s  t he  condition on the  k'(y,x,t) i n  

Theorem 4.2. 

-- - -- 
R(x, y, t) a l s o  s a t i s f i e s  the  boundary conditions on - - - 

t h e  RU(x,y,t) of Theorem 4.2, and the  'R ica t t i '  equation - - -- 

= - Q ( X , Y , t j  

where k(y,x,t)  --_ i s  given by (25) k(x,v,t)  = -b(v,t)R(v,x,t) /P(v,t)  

and a l so  -- 

Proof. The proof i s  divided i n t o  three s teps .  First,we 

show illat $(x,y, t) converges (almost everywhere) t o  some function 

R(x,yJ t); second t h a t  R(x,y,t) i s  smooth and s a t i s f i e s  (&), and 

th i rd ,  t h a t  R(x, y, t) corresponds t o  the  optimal control .  By (24) 

(where u and are  replaced by un and u ) and the  non-negative 

def ini teness  of t he  Ri(x,y,t), 

n+ 1 

n 
f o r  any bounded measurable cp(x). Also the  R (x,y,t)  are  continuous 



n - 
i n  D X 6 x [O, TI .  Hence, t h e  diagonal values R (x,x, t) a r e  non- 

negative and non-increasing as n increases, and Rn(x,x,t) 1 R(x,x,t) 

(almost everywhere) f o r  some function R(x,x,t). This together with 

max IRn(x,y,t)l 5 m p  IRn(x,x,t)[, implies t h a t  t h e  Rn(x,y,t) a r e  
x, y 
uniformly bounded. I n  fac t ,  t he  pointwise convergence implies t h a t  

t h e  diagonal values converge 'almost uniformlyf i n  the  sense t h a t  

fo r  any f ixed E > 0 the re  i s  a function a ( w , ~ )  tending t o  zero 

as N 3 co and a s e t  S C with Lebesgue measure ~ ( N , E )  so tha t ,  a 
f o r  any m,n > N 

(29) 
n 0 5 R (x,x,t)  - Rm(x,x,t) < e 

- 
on D - Sa. Next, suppose tha t ,  f o r  some m > n > N 

Rm(xt,x",t) - Rn(x',x",t) > 2 4  (294 

. .  

$3 & m e  Then, by cont inui ty  and symmetry, 

t he re  a r e  neighborhoods A' ,A" of  x f  ,x", resp (Af ,At l  a re  assumed t o  

(xf,x") E @-Sa) x (B-S ). c 

be i n  fi-S ) so t h a t  (29a) and (29) hold on A' x A" U A" x A ' .  Let - a 
I(A)(x)be the  cha rac t e r i s t i c  function of t h e  s e t  A. Set q(x)  = 

I ( A '  U A l l ) ( ~ ) .  

-- - 

Then using t h i s  and the  diagonal (29) bound i n  (28) 

gives 

/[ Rn(x, y, t)  -Rm(x, Y, t)  3 I (A' UA" ) (x) * 1 (A' UA" ) (Y) dxdY 

5 ( 2 ~ - 4 ~ ) p ( A ' ) p ( A " )  < 0 
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- (u(.) is Lebesgue measure on D, a contradiction. Since a can be 

made arbitrarily small by increasing Rn(x, y, t) N, we conclude that 

converges almost everywhere to a function R(x,y,t). Furthermore, it 

is clear that R(x,y,t) is symmetric, measurable and bounded almost 

everywhere by r(x,y,t), where r(x,y,t) is some function which tends 

to zero as x + &I or y -+ &I. 
- -  

To continue, we use the representation (see Theorems 4.1 and 

4.3 fo r  terminology) 

&l -n+ 1 
(x,Y,t) = R (x,y,t) + 

(30) 
n+ 1 T 

+ J JdsdvdwK (x,y;v,w;t, s)Rn(v,w, s) 
t 
T 

+ .f Jdsdvdw?+l(y,x;w,v;t, s)Rn(v,W,s) 
t 

kml(x' ,v, s )  = -b(v, s)Rn(v,x', s)/P(v, s) (33 1 

The left side of (30)  tends (almost everywhere)to R(x,y,t). 

Similarly (and we omit the uninteresting details) the limit of each 

sequence of integrals can be replaced by the integral of the (almost 

everywhere) limit of the integrands. 



Thus, a.e. 
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where the  kernel  K i s  given by (34) with R(v,x ' ,s )  replacing 

R (v,x',s). n 

Consider t he  E(x,y,t)  term i n  (35) .  Since Q(x,y,t) i s  

symmetric, bounded, measurable and tends t o  zero (almost everywhere) 

as x + &I o r  y + aD, R(x,y,t) i s  Holder continuous a 2  t e n d s  t o  

zero as x 3 &I or  y -+ a D  or  t + T. If a member of t h i s  l a t t e r  

class i s  su5st i tuted f o r  the  

Similarly the  map K 

N 

N "0  

R(x,y,t) E C 2+a. Q(x,y,t), then 

(the suh of the  in t eg ra l s  i n  (35)) takes  

R(x,y,s) 

x + &I, y + a D  or t + T. 

i n t o  a Holder continuous f'unction which tends t o  zero as 

If a member of t h i s  c l a s s  i s  subs t i tu ted  

f o r  t h e  R(x,y,s) i n  the  kernel K, then t h e  sum of the  in t eg ra l s  i n  
"0  

(Recall Yne i den t i ca l  asser t ion  i n  the  proof of (35) i s  i n  C2+a' 

Theorem 4.1. ) These considerations imply t h a t  R(x, y, t )  i s  indeed 

0 
A 

i n  C2+a- 

Upon d i f f e ren t i a t ing  (35) arld using Gt(x,xt; t, s)  = 

-2zG(x,x'; t, s)  we get  (26). 

Now, pote t h a t  t he  u(x, t )  i n  (a) i s  the  v (x , t )  which 

minimizes (19) and (20). Thus, l e t t i n g  ?(x,t)  be a control  of the  

form (23a), (19) yie lds  



34 
I 

2 T 
+ EU / /dsdxP(x,s)u (x,s) 

q t  

- T -  - T  ( 3 6 )  ~ 

' P t  'Pt ~ 

5 EV / dvCu(W(x, s), s) + EV /dsdxdyS(x,y, s)W(x, s)W(y, s) 
I 

-2 - T  
+ EV / /dsdxP(x,s)v (x,s). 

' P t  

Since the  f i r s t  terms on the l e f t  and right of (36)  are  equal, 

implies C! (cp, t )  s c ( c p , t ) .  Q . E . ~ .  

(36)  - 
U V 
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